THE NUMBER OF SOLUTIONS OF λ(x) = n
نویسنده
چکیده
We study the question of whether for each n there is an m 6= n with λ(m) = λ(n), where λ is Carmichael’s function. We give a “near” proof of the fact that this is the case unconditionally, and a complete conditional proof under the Extended Riemann Hypothesis. To Professor Carl Pomerance on his 65th birthday
منابع مشابه
Karlin’s Basic Composition Theorems and Stochastic Orderings
Suppose λ,x,ζ traverse the ordered sets Λ, X and Z, respectively and consider the functions f(λ,x,ζ) and g(λ,ζ) satisfying the following conditions, (a) f(λ,x,ζ) > 0 and f is TP2 in each pairs of variables when the third variable is held fixed and (b) g(λ,ζ) is TP2. Then the function h(λ,x) =∫Z f(λ,x,ζ)g(λ,ζ)dµ(ζ), defined on Λ×X is TP2 in (λ,x). The aim of this note is to use a new stochast...
متن کاملExistence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...
متن کاملSolutions of Fuzzy Linear Systems using Ranking function
In this work, we propose an approach for computing the compromised solution of an LR fuzzy linear system by using of a ranking function when the coefficient matrix is a crisp mn matrix. To do this, we use expected interval to find an LR fuzzy vector, X , such that the vector (AX ) has the least distance from (b) in 1 norm and the 1 cut of X satisfies the crisp linear system AX = b ...
متن کاملOn the congruence x x ≡ λ ( mod p )
In the present paper we obtain several new results related to the problem of upper bound estimates for the number of solutions of the congruence x ≡ λ (mod p); x ∈ N, x ≤ p− 1, where p is a large prime number, λ is an integer corpime to p. Our arguments are based on recent estimates of trigonometric sums over subgroups due to Shkredov and Shteinikov.
متن کاملDiophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملDistributive Lattices of λ-simple Semirings
In this paper, we study the decomposition of semirings with a semilattice additive reduct. For, we introduce the notion of principal left $k$-radicals $Lambda(a)={x in S | a stackrel{l}{longrightarrow^{infty}} x}$ induced by the transitive closure $stackrel{l}{longrightarrow^{infty}}$ of the relation $stackrel{l}{longrightarrow}$ which induce the equivalence relation $lambda$. Again non-transit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010